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Abstract

The acoustic pressures developed in a boundary layer can interact with an aircraft
panel to induce significant vibration in the panel. Such vibration is undesirable due to
the aerodynamic drag and structure-borne cabin noise that result. The overall
objective of this work is to develop effective and practical feedback control strategies
for actively reducing this flow-induced structural vibration.

This report describes the results of initial evaluations using polynomial neural
network-based feedback control to reduce flow-induced vibration in aircraft panels due
to turbulent boundary layer/structural interaction. Computer simulations are used to
develop and analyze feedback control strategies to reduce vibration in a beam as a
first step. The key differences between this work and that ongoing elsewhere in the
active control of structural vibration are, firstly, that turbulent and transitional
boundary layers represent broadband excitation and thus present a more complex
stochastic control scenario than that of narrowband (e.g., laminar boundary layer)
excitation; and, secondly, that the proposed controller structures are adaptive
nonlinear infinite impulse (IIR) response polynomial neural networks, as opposed to
the traditional adaptive linear finite impulse (FIR) response filters used in most
studies to date.

The controllers implemented in this study achieved vibration attenuations of 30 to
60 dB, depending on the type of boundary layer established by laminar, turbulent, and
intermittent laminar-to-turbulent transitional flows. Application of multi-input,
multi-output, adaptive, nonlinear feedback control of vibration in aircraft panels
based on polynomial neural networks appears to be feasible today. Plans are outlined
for Phase II of this study, which will include extending the theoretical investigation
conducted in Phase I, and verifying the results in a series of laboratory experiments
involving both beam and plate models.
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1 Introduction

The acoustic pressures developed in a boundary layer can interact with an aircraft panel
to induce significant vibration in the panel. Such vibration is undesirable due to the
aerodynamic drag and structure-borne cabin noise that result. The overall objective of
the proposed work is to develop effective and practical feedback control strategies for
actively reducing this flow-induced vibration of aircraft panels.

This report describes the results of initial evaluations using neural network-based
feedback control strategies to reduce flow-induced vibration due to turbulent boundary
layer/structural interaction. Computer simulations are used to develop and analyze
feedback control strategies to reduce the vibration in a beam as a first step. There are
two key differences between this work and that ongoing elsewhere in the active control
of structural vibration. Firstly, that turbulent and transitional boundary layers repre-
sent broadband excitation and thus present a more complex stochastic control scenario
than that of narrowband, deterministic excitation, such as from propeller-induced noise.
Secondly, that the proposed controller structures are adaptive nonlinear infinite im-
pulse response (IIR) polynomial neural networks, as opposed to the traditional
adaptive linear finite impulse response (FIR) filters used in most studies to date.

Simulation involved two basic modeling tasks: modeling the beamn response and
modeling the ezcitation field. Both of these issues are discussed herein. With regard to
the panel response, the basic assumption invoked is that this response can be described
as linear, as is conventionally done in studies of panel vibration (see, e.g., [25]). Such
a model can be developed from the basic principles of plate theory [5, 8], and this is
the approach that is adopted here. .

Due to the complexity of the flow processes of interest, useful models for the excita-
tion field are necessarily stochastic. For self-preserving boundary layers, such as those
occurring in purely turbulent flow, the excitation field can be assumed to be a Gaussian
random field (e.g., [3]). Under this assumption, it is sufficient to model the excitation in
terms of its second-order statistical properties, specified in terms of correlation or spec-
tral properties of the excitation. Experimentally-derived models for the second-order
structure of the turbulent boundéry layer (as it interacts with the panel structure) are
reported in [17-19, 24]. Certain of these models will be adopted here as the bases for
the development of linear stochastic control stategies for flow-induced panel vibration
due to turbulent boundary layers.

In addition to studying the control of vibration in response to a turbulent boundary
layer, this initial study also focuses on the control of vibration induced by laminar-

to-turbulent transitional boundary layers. Transitions from laminar to turbulent flows



result in non-equilibrium boundary layers, which cannot be modeled accurately as
Gaussian random fields. In particular, the behavior of the pressure at a point in a
laminar-to-transition zone region resembles an mtermlttently gated random signal [5,
p. 579]. Even though the random 51gna|s themselves are Gaussian (i.e., they are the

pressures of purely turbulent flow, or of purely laminar flow), the resultant of the -

intermittent gating produces a non-Gaussian signal. Modeling of this type of excitation

for the purposes of vibration control can take one of two forms, dependmg on the control * -

strategy to be applied. If a linear control structure is to be used, then it is sufficient to

model the excitation based on its second-order statistical properties, specified in terms -
of the correlation or spectral properties of the excitation. Second-order models for the-

pressure field due to laminar-to- -turbulent transition zones are described, for example, in
(9] and [5, Eq. 8-71]. These models, perhaps with suitable modifications, can be used as
the bases for developmg linear stochastic control stategies for transitional-flow-induced
panel vibration.

Optimum linear feedback control based on second-order modeling is globally optl-
mum for the control of Gaussian vibration fields. However, the non-Gaussian excitation
found in transitional boundary layers will produce a non- -Gaussian vibration field in
the panel to be controlled, and the corresponding optimum stochastic control strategies
will therefore be nonlmear Effective and adaptive approximations to such optimum

control strategies are also likely to be nonlinear, and as such can be implemented using ™~

the general structure of nonlinear polynomial networks (e.g., [4]). Since these transition
zone regions are potentially a major source of vibration in aircraft panels, it is essential
that their full statistical behavior (i.e., not only their second-order characteristics) be ap-
propriately modeled in the process of developing vibration control strategies. Even if
linear control strategies based on second-order models were to emerge as being nearly

as effective as fully optimal nonlinear solutions (an eventuality that is not clearly likely), - -

their relative effectiveness could only be assessed through consideration of higher-order
statistical characteristics of the flow.

This report is organized as follows. Section 2 describes the fundamental stochastic
partial differential equations (PDEs) that model the response in the linear regime of
a flat plate immersed in a fluid, when subjected to a boundary pressure field. Sec-
tion 3 discusses the acoustic damping arising in such a model due to the interaction
of the fluid with the plate. Two basic models are discussed in this context, corre-

sponding to the cases of subsonic and supersonic ﬂund motion. Section 4 describes
two experimentally- -determined stochastic models, again correspondmg to the subsonic
and supersonic regimes, for a turbulent boundary convected over the panel. Section 5

discusses the decomposition of the panel motion into its modal behavior, and Section
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6 discusses the modeling of sensor and actuator configurations. In Section 7, the over-
all model is described in some detail for the lower-dimensional problem of controlling
a vibrating beam, and in Section 8 a hierarchical succession of benchmark examples
is proposed for computer simulation of the boundary layer/structural interaction. In
Section 9, experimental results are given demonstrating the effectiveness of feedback
control in active vibration suppression for a beam excited by laminar and turbulent
boundary layers, as well as laminar-to-turbulent transitions of the boundary layer. Fi-
nally, in Section 10, future directions for continuance of this work in Phase II are briefly

outlined.

2 A Fundamental Model for Panel Response

We wish to model the motion of a thin, flat rectangular panel occupying the region
R={0<z<a0<y<bz=0} over which a turbulent fluid is flowing at an
average velocity v in the positive x direction. It is assumed that the plate is of uniform
stiffness, and is clamped at the edges.

The motion of such a plate is described by the stochastic PDE [8]

2

(Dv4 s

872-) w=f+d, (21)

where w, f, and d are fields (in this case, functions of z,y, and time t) representing
the plate displacement, the external pressure due to the turbulent boundary layer, and
damping, respectively, all taken as being positive in the negative z direction. Here, V*
is the btharmonic operator

o o* o
4 _ Z .
Vi= (5$4 + 28x28y2 + 3y4) d (2.2)

D is the plate rigidity; and p; is the mass density (per unit area) of the panel. The
plate Eq. 2.1 is subject to the boundary conditions imposed by the clamped edges:

w(0,y,t) = w(a,y,t) = w(z,0,t) = w(z,b,t) = 0. (2.3)

It is assumed that the external pressure field is due exclusively to a turbulent bound-
ary layer on the z > 0 side of the plate. In this case, the forcing field f can be modeled
as a homogeneous Gaussian random field whose second-order statistics will be de-
scribed below.



The damping field d(z,y,t) can include both structural and acoustic damping
terms. Structural damping is modeled by including a term d, = —'/,g%w in d, where

v, > 0 is a coefficient of structural damping [19]. Acoustic damping is due to the
feedback effects of an acoustic velocity potential, é(z,y,z,t), launched into the fluid '

by the plate motion [24]. The evolution of this potential is governed by the wave
equation \
Vi = (_3_ + v-—a—) 6, z>0 (2.4)
ot oz) T T 7 , -

2 2 2 . ' .
where V2 = ( 561—2 + 5%— + :%,—) is the Laplacian operator, and ¢ is the speed of sound
in the fluid. This potential is driven by the plate motion via the boundary condition:

J 0
EQ(I'7 yazat)l".:O = aw(%y,t)- (2‘5)
The resultant damping field coupled into the plate is then given by
0 0
di(z,y,t) = = — | é(z,y,0,t), 2.
(z,9:1) pz<at+vax)o(x.y0 ); (2.6)

where p is the mass density of the fluid.

3 Damping Models

We will consider two specific damping models, corresponding to subsonic and super-
sonic flow, respectively, within the general model described above.

3.1 Subsonic Flow

For subsonic flow (v < c), the viscous damping can be treated as an additional term of

the form d, = —'ya%w with 7, > 0 [19]; thus the equation of interest is a second-order

(in time) stochastic PDE:

d? 0
(DV4+P1'6§+75;>W=L (3.1) -

S withy =9, + Ya This type of damping is know as pfoportionate damping; and,
although it is somewhat ad hoc, it has the virtues of parsimonious description and
intuitive simplicity. Unfortunately, this model is too simple to accurately describe the

4
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damping observed in physical plates. A related damping model that is more consistent
with observed behavior introduces proportionate damping terms in each mode of the
plate, allowing ¥ to vary with mode number [19].

In particular, with proportionate damping, we note that the behavior of a given
mode (say, the m'?) in the eigenfuntion decomposition of the panel motion will have
the dynamics of a simple mass-spring system, described by the following scalar second-
order ordinary linear differential equation:

d
(,,1% +rg mm) wn(t) = fult). (3.2)

The dynamics of this system are those of a damped harmonic oscillator with damping
ratio ¢ = v/2wmp) and damped resonant frequency wy = wm+/1 — (2. where the
undamped natural frequency wn equals \/DAm/p1. A closer fit to actual panel be-
havior can be achieved by allowing 5 to vary with m. That is, we consider temporal
modal displacements wn, () satisfying the differential equation

2
(pl% bt Dxm) n(t) = Fnlt). (3.3)

This does not translate back into the simple global proportionate damping model of

Eq. 3.1 when the modes are superimposed. Rather it provides a richer damping model
while preserving the linearity and analytical tractability of the eigen-decomposed plate
model.

Of course, the individual modal dynamics are still those of mass-spring systems
with the only modification being that the damping ratios become (m = Ym/2wmp1.
As with a global damping based upon 7, the individual modal damping coefficients
“m must be chosen empirically. For example, one choice suggested in [19] for a specific
class of plates is ¥m w,ln/3. Typically, the range of damping ratios { that one would

expect in panels are on the order of 0.001 to 0.01.

3.2 Supersonic Flow

For supersonic flow (v > c), the modeling of the acoustic damping is more complex.
In this case, the relationship between the motion of the plate and the acoustic potential
at the surface of the plate is described by [25]:

1 b re / ' . 9 .o 1y
q')(:c,y,O,w):/o/oG(x—x,y—-y,w) (—zw+vax,)w(x,y,w)d:zdy,
(3.4)




where qS and @ are the Fourier transforms of c;‘) and w, respectwely, as functions of

their time variable t; and where G is a Green's function for the system of Eqs. 2.4-2.6,
given by: e R

7 1A{k;~: ca.s(—;—\/zz2 (\rﬁ—l)yz) —
Glz,y,w) = ea:p Ve e ifz > |y]\/ M
0

otherwise
| (3.5)
where k = w/c, and M is the Mach number ( \/[ =v/c).”

The integral in Eq. 3.4 has a strong smgulanty of the Cauchy type along the inter-
section of the Mach cone with the z = 0 plane. Thus, the evaluation of this transfer
characteristic requires some care. o '

47"’ Stochastic Models for trrhie Turbulent Bound-

ary Layer

The forcing field f in Eq. 2.1 is the pressure exerted on the plate by the turbulent
boundary layer. This field can be modeled as bemg a homogeneous Gaussian field [15],
and thus its spemflcatlon requires only the determmatlon of the second- order correlation
function of the field; viz.:

Ty(&n,7) = {flz,y,)f(c+ &y +n,t+ 7). (4.1)

We consider two different models for this correlation structure, corresponding to
experimentally-derived models for the subsonic and supersonic cases.
In the supersonic case, we consider the model [25]:

A [ 2A, K, e l€l/ebg=Inl/ozb
Fl(f’"’7)=<P2>Z{ a+zv/5o) €-T. )},

(4.2)

where the As, K's and as are constants, 6 is the boundary layer thickness, U, is the
convective velocity (assumed to be less than v), and (p?) is the mean-square intensity
of the forcing field. Experimentally determined values for the A, and K, parameters
areglvenbyA1—44><102Ag 75 x 1072, 4; = =93 x 1072, A, =
-25)(10— 1\1'—578X10_2 1(2—243)(10—1 I<3—112 and1&4—1157
Specific values of the remaining parameters for a benchmark example will be given
below.

T

R T T T
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An empirically-determined model for the pressure field in the subsonic case is
described by the covariance structure [17]:

3

24" K" e~Kl/U8 '
- } , (4.3)

2

I n.7)=(p >§=:1 {(1\:‘)2 + (1/62[(€ = U.r)? + n?
where 8, the A’s and K’'s are constants; and where 6* denotes the boundary layer
displacement thickness. Note that this is only one of several similar models that have
been proposed for the pressure field of a subsonic turbulent boundary layer {17, 19],
and it is chosen primarily because of its functional similarity to Eq. 4.2 in the two key
variables (viz. £ and 7). Experimentally determined values of A, and A} parameters
are given by A} = 0.24, A} = 1.08, 45 = 1.80, K] = 047, A} = 3.0, and K3 =
14.0. As for the supersonic model, benchmark values of the remaining parameters will
be specified below.

As noted in the Section 1, this Gaussian model for the pressure induced by the
boundary layer is not suitable for transitional boundary layers. Later in this report,
we implement a model of the transitional boundary layers, representing non-Gaussian
excitation. To do so, we consider a model that treats the pressure field under all condi-
tions as a mixture of those induced by purely laminar and purely turbulent flows, each
of which can be modeled as a Gaussian random field. (Actually, the laminar flow can
be modeled as being sinusoidal without significantly sacrificing accuracy.) The mixing
of these two flows can be modeled by an independent, binary gating field, that switches
intermittently between the two equilibrium boundary layers. This binary field can, in
turn, be modeled as being Markovian in space and in time (i.e., it can be modeled as
a dynamic Gibbs field), with transistion statistics that can be parameterized to yield
either of the pure states or any degree of transition. This then, will add parameters
to the model in addition to those discussed above. It should be noted that such a
strategy could also be used to develop more refined second-order models, analogous
to those of Eqs. 4.2 and 4.3, for the transition-zone statistics; although a full-order sta-
tistical model is of primary interest in the present context of developing algorithms for
vibration control.

5 Evplutioni;n( T rmsof Spatial Modes

In order to create a more parsimonious desciption of the evolution described by Eq.
2.1, it is useful to represent all spatial characteristics in terms of the modes of the plate
via a set of orthonormal eigenfunctions of the biharmonic operator, V*. In particular,



on denoting by { /\k}ﬁ__l and {z!)k}z":l the eigenvalues and corresponding orthonormal
eigenfunctions of V* (i.e., solutions to V4 = A1), we can then write Eq. 2.1 as the
vector differential equation:

( ;t,+7u:t+DA) w(t) = }(t)+a() - (5.1)

where, A is the dlagonal matrix thh dlagonal elements \1, Ag, .3 and for each k =
1,2,..., the k** components of w(t), f(t), and ¢(t) are given by

= /Ob /Oaw'(‘:c‘,y,t)zpk(x,‘y)dmy,  5.)
= [ [ f@ vt ey, (39)

and -
ak(t) // o(2,9,)¥u(z,y)dady. o (54)

(Of course ax(t) is simply =7, 5 ck(t) in the subsonic case.) The displacement field at
each time ¢ is then ngen by the expansnon -

(z,y,1) Zwk(t Ji(z, J) (z,y) € R. (55)

Further discussion of this expansion, including remarks on the structure of the input
and damping terms, is included below.

6 Sensor and Actuator Modeling

In order to study the control of the field w we can consider three models of interest. In
the first of these models, we assume that the field can be sensed throughout the region
R, and that we can apply controls at all points in R. That is, we assume measurements
of the form '

(xy,t)—w<xy,)+n(x'y,t) (@Y ER, 120, (61)

where n represents a white Gaussian measurement noise ‘field; and a control input to
Eq. 2.1 of the form

dzv.0=[ [ / (2,0, 2, E)r(, o' ) da'dy de', (6.2)

8
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where h is the transfer function of the controller. Note that, in assuming a linear
control law, there is no loss in generality with a quadratic loss performance criterion
(e.g., minimizing squared error) since the field to be controlled is Gaussian and the
measurements are linear.

This model can be decomposed into modal components. In particular, we can
consider the equivalent model:

r(t) = w(t) + n(t), (6.3)

where n represents a vector of independent and identically distributed Gaussian white-
noise processes. Within this representation, the control signal becomes

W= [Hengow.

where the matrix function H has k — [** element

b pra b ra
Hi (t,t) = /0 /0 /0 /0 h(z,y, t; 2,y t)or(2', ' )ou(z, y)dz' dy' dzdy.
(6.5)

This first model is primarily of theoretical interest since it is not practical to apply
sensing and actuating materials to the entire panel. However, consideration of this
model can provide useful insight into the controllability properties of the overall system
describing the plate motion.

As a second, more realistic measurement model, we can consider the sensing/actuation
of the field by point sensors/actuators placed on a lattice of points, {z;,y;; ¢ =
l,...,n,7 = 1,...,m} in R. In the simplest case of this model, we can assume
measurements of the form

r(zi, ¥, t) = w(zi, ;) + Nij(t), i=1,...,n, j=1,...,m, (6.6)

- where {N;;(t), i =1,...,n, j =1,...,m} is a family of independent and
identically distributed white-noise processes. This model can be modified to include
the dynamics of the sensors by replacing the terms w(z;, y;,t) with filtered versions
w'(z;,y;,t) given by

d ’ ’
:ﬁw (‘riaijt) = '_fsw (zivyivt) + w(zi’y.i’t)’ (67)



where f, > 0 determines the bandwidth of the sensors. (Obviously, this model assumes
identical, first-order sensors.) In terms of the modal response, the model of Eq. 6.6 can
be written as

(=<}
T(l’,’, yJ':t) = Z wk(t)¢k(2i, y)) + ‘/Vt',j(t)? i = 13 v anyj =1,... y M (68)
=0 .

or to incorporate sensor dynamics, we can replace the wis with w;s generated by

d
dt
Note that, within this model, we have multiple independent measurements of each
component of r(#), but that these measurements are not independent from component
to component. Of course, as the lattice becomes denser, these various measurements can
be combined to provide approximately independent measurements of the components
by approximating the continuous model of Eq. 6.3.
In the point-actuator model, the control signal will take the form

zy,t)*ZZC(rnJJ,M(I—L (J—yj), (z,y) € R.1 20, (6.10)

i=1=1

where § denotes the Dirac delta function, and where the coefficients c(z;,y;,t) are
obtained via linear transformation of the measurements for times up to time ¢, that is,

xnyh Z Z/ I"yi’t Iy ’yJ"t )d (611)

—11’—1

where the coefficent function h determines the controller. In terms of modal response,
the vector control signal analogous to that of Eq. 6.4 has kth component in this case
given by

n m

c(t) = Z Z c(zi, v, t)e(zi, y;)- (6.12)

i=1 =1
Analogously to Eq. 6.7, actuator dynamics can be included in this model by replacing
the signals c(z;, y;,t) with filtered versions c'(z;, y;, t)

d '
'Et'cl('ri?yj,t) = —fac (xivyﬁt) + C(fﬂi,y,',t), (613)

10

wi(t) = —fouh(D) +wit). (69




where f, > 0 controls the actuator bandwidth. Of course, both Egs. 6.7 and 6.13 can
be incorporated into the plant when designing and evaluating specific control laws. As
a final comment on this model, we note that this model is easily modified to allow for
sensing and actuating on different lattices.

The third model of interest is that in which the sensors and actuators are placed on
lattice points as above, but they are modeled as having significant dimensions. In this
case we can think of an observation for each lattice point that integrates the displacement
field over the subset of the panel occupied by the sensor at that lattice point. That is,
on denoting the region occupied by the i — j** sensor by R, ;, we can integrate the
continuous model of (6.1) to yield the discrete model

R,‘_J(_t) = I’V,‘J(i) + .V,'.J‘(f). t=1,...,n.y=1,....m. (614)

where R;J(t) Wi j(t), and .Vy ;(t) denote the integrals of the fields r(z. y.t), w(z, y. t),
and n(z,y,1). respectively, from Eq. 6.1, over the region R, ;. Note that we retain the
notation of Eq. 6.6 for the noise, since the noise elements N ;(t) obtained by integrat-
mg n(x y.t) over the reglons R ; form a matrix of independent white noises as was
the noise model in Eq. 6.6. These noises wnll be ldentxcally dlstnbuted if all sensors

have the same area. (It is assumea Qf course, that the sensors do not overlap one
another.) S :

* The i — j** actuator can be assumed to apply uniform pressure over the region
R, ;. Thus, the control signal in this model takes the form

n m

c(z.y.t) ZZC’,,H Mr,,(z,y), (z,y) € R,t >0. (6.13)

i=1 =1

where Iz, , denotes the indicator function of R, j; and where the functions C; ;(t) are
obtained by linear transformations of the measurements Eq. 6.14 in a manner analogous

to Eq. 6.11.
In modal form, the sensor model Eq. 6.14 is

Zw Ui (i,7) +]\,J(t) t=1,...,n,7=1,...,m, (6.16),
with Ui(i,§) = [, ¥x(z,y)dzdy; and the k** component of the modal control
signal becomes S

c(t) =33 Cij(t)Wi(i, 5). (6.17)

=1 =1

1



As in the point sensor/actuator model, the sensor and actuator dynamics can be
introduced by replacing the quantities W; ;(t), C; ;(), and wi(t) with appropriately
filtered versions. Also, as above, the model is easily modified to provide for non-
colocated sensors and actuators. '

For the Phase [ analysis of the vibration control problem, it will be assumed that
sensing and actuation are performed in a continuously distributed fashion. The modal
controllers will assume complete knowledge of modal displacements (i.e., ideal sensing)
and the ability to effect unimodal actuation (i.e., ideal actuation). Consideration of this
model can provide useful insight into the controllability properties of the overall system
describing the plate motion. This is appropriate for the Phase I study of the viability
of active control.

We end this section with a few comments. First, note that any of the three sensing
models can be combined with any of the three actuation models by a straightforward
modification of the equation describing the transfer from measurements to controls.
Secondly, it should be kept in mind that in a practical system, these transfer character-
istics will take on a constrained form. (For example, their time behavior will likely be
constrained to be that described by time-invariant, lump-parameter systems.) Thirdly,
in the event that the forcing and damping functions can be modeled as autoregressive,
moving-average (ARMA) processes, the optimum stochastic controller will take the
form of an optimum state estimator (e.g., a Kalman filter), followed by an optimum
deterministic controller. Finally, we recall that the assumption of linearity in the control
law will not be reasonable for the generalizations of this problem in which the forcing
function is a transitional field {5, 11]. This is because such fields are not Gaussian, and
therefore do not yield linear structures as optimal controllers even under quadratic loss.
Thus, in the case of transitional boundary layers, nonlinear mappings (such as polyno-
mial networks) from the sensors to the actuators will replace the linear mappings of
Egs. 6.2, 6.11, etc.

7 Consideration of a Vibrating Beam

One difficulty with the panel model described in the preceding sections is that it is
quite complex spatially. In order to reduce this complexity, it is useful to consider first
ay = 0 “slice” of the problem. This simplification will still allow us to investigate
many of the basic phenomena of interest, provided that the slice is oriented in the
direction of fluid flow (i.e., in the z direction). Thus, we will consider the control of
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the analogous stochastic PDE in two spatial dimensions (z and z):

(8“ 9?

+ + 9 w=f+d,+¢c, 0<z< t2>0 7.1
a 4 platz 7Jat - a y . a, = U, (‘. )

where the displacement w, forcing field f,r écoustic damping d,, and eredb-avc‘k- control
¢ are functions of T and t. The boundary conditions are
w(O, t) = iu(a;t) =0. 7 (7.2)

In the supersonic case, we will consider the acoustic damping to result from an
acoustic potential é(z,y,t) evolving in the T — = plane via the two-dimensional version
of Egs. 24-2.6: o o '

P o LS o
¢ (5;5+a—:5)¢ (5t :r) ¢, z>0: (7.3)
9 ., 0 .
: 'a_z¢(x1"1t)|z=0 - Ew(xst)i (‘4)
and 5 9 ' o
da(.’l.',t) = p2 (af + UE) ¢(I,0,t). (75)
The spatial eigenvalues and orthonormal eigenfuctions of Eq. 7.1 are given by (e.g.,
[25)) o N
. ~
Ak = ( . ) , (7.6)
and

Yr(z) = % [ek (sm% — sinh Bz ) ( s%ﬁ — cosh ﬁf)] , (1.7)

where ¢, = %, and B, Bz, . - . , are the roots of the equation cos B cosh B =
1. These roots are given approxnmately by ﬂ1—4 730 B,=7.853, and B,=n(2k +
1)/2, for k > 2. .

Knowledge of the exgenstructure of the clamped beam al lows us to model the forcing
function in the modal decomposition of Eq. 7.1. In particular, the forcing function can
be written as ' ' ‘

0 =3 ftyble), (1.8)
k=1
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with

t)_/fxt¢k(x)dx F=12.... (19

Since f is a Gaussian field, the vector process f (t) will also be Gaussxan ‘Thus, we
can model its statistics by determmmg its autocorrelanon matrix I'( r) whose k — 1"‘

element is given by:
Tuilr) = (eldfrt+7) = [ (s) /0 4¢1,(x')r(x—x',o,r)dxdx'. (7.10)

“where I' is derived from Eq. 4.2 or 4.3, depending on whether we are considering the

subsonic or supersonic case. In either case, the computation in Eq. 7.10 is simplified
by first transforming to the temporal frequency domain. After Fourier transformation
(in the T variable), both Egs. 4.2 and 4.3 reduce to the form:

FL(€,0,w) = Fw)eolitiue/Ue ™ (7.11)

where F' is a weighted sum of exponentials; and where g = Ul—a in the subsonic case,
<

and g = ;17—; in the supersonic case. Thus, in the temporal frequency domain the

elements of I are given by:

= a . z .7 a N
Lip(w) = F(w’)/o Yi(z) [C“A 1/0 i(2)et T da’ + e"”/ Wi(z')e 4" dx'] dz,

(7.12)
with A = g + 1w/ U,. By inserting Eq. 7.7 into Eq. 7.12, the forcing statistics can be
determined in closed form. In particular, we have

Tes(w) = FW)[Bri(w) + A7(w) + Zea(w) + Zp(w)], (7.13)
where :
Aoy = (8200 = w7(0) - (A97(@) - SN @) + 9D(e))
' (A = A)(AT = M) ’
and = - f— ToEC : C BT E e P
_ A8, + AN + Aw"’ +
Zri(w) = g . (7.15)
Here, 6, denotes the Kronecker delta; and the constants \Ili"‘,) are given by
o) = [#ei(z)dz, n=1,23, (7.16) .
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where here and in Eq. 7.14 ¥{"(z) = d"x(z)/dz".

Note that the terms described in Eqgs. 7.14 and 7.15 consist of rational functions of
the frequency w combined with pure delays. Thus, this stucture is straightforward to
realize in hardware or software using l'inear;vlumped~parameter networks with delays.
Note that there are only two fixed delays, €™/Ue and e*/Uc, independent of the choice
of k and [, so that the entire stucture [Ag j(w) + A7 (w) + Zg i(w) + = (w)] can be
realized as four seperate (rational) matrix networks combined with scalar time delays.
The remaining part of I'(w) is the term F'(w), which is not rational. In particular, for

the subsonic case, F is given by:

B 51' 3 . _ne .
Flw) = (p")= 3 Aje™Rebily, (7.17)
n=1

and for the supersonic case, F is givenr by

§ & S
Flw) = (p') 7 3 Ane™ /e, (7.18)

¢ n=1]

Since this component of the spectrum is nonrational, it cannot be synthesized using

a linear, lumped-parameter model. Fortunately, this part of the spectrum is not tied
to the spatial structure; therefore, it can be synthesized as a scalar random process,
which can then be fed into the spatial structure via the rational network derived from
the remaining terms. The sums in Egs. 7.17 and 7.18 can be realized by producing
independent processes having the individual spectra of the summands, and then adding
them together. Thus, the key to simulation of the nonrational part of this excitation is
to synthesize stationary random sequences with the generic spectral shape

(w) = rae™M, (7.19)
To consider the generation of this process in discrete time, we first note that the
autocorrelation function corresponding to Eq. 7.19 is given by ' '

1

p(r) = m, ~00 < T < 00. (7.20)

When sampled at time instants spaced A time units apart, the resulting discrete-time
process { X} will have autocorrelation sequence
1

palk) = (XeXon) = T (121).
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where aa = a/A, which has the corresponding spectrum .~ -~ - .o o

= e'f"‘é _ | coshaA(W— w) o
da(w) = n=z_°° 14 (kfaa)? Taa sinh apw -l Oswsorm

' (7.22)
Such a process can be produced by ﬁltermg a white Gaussian sequence with a linear
filter having gain /¢4 (w). If causality is not required, this can be accomplished simply

by using the filter with transfer function \/@a(w). If, on the other hand, causality is
desired, then it is necessary to factor ¢4 into its causal and anti-causal spectral factors,
#% and ¢, respectively, a task that must be performed numerically.

8 Benchmark Examples

In order to study the control problem in the above models, it is useful to specify bench-
mark values for the various parameters arising in the preceding sections.

For the subsonic case, we can choose among several scenarios studied in [19]. We as-
sume the same panel' parameters as in the supersonic case, and fix the following param-
eters for the boundary layer [19] (see Eq. 4.3): v = 110m/s, 6~ =0.39cm, U, =
0.8v, and § = 176°/U.. Again, we choose negligible damping (as in [19]) although
this might perhaps be changed to a more realistic value. Within these benchmarks, we
can consider the hiérarchy of models listed in Table 8.1. The shaded region represents
those models investigated in this Phase I report.

In studying the beam, we will take intensive quantities to have the same numerical
values as their higher-dimensional counterparts in the benchmark model. Note that
the above hierarchy includes non-Gaussian excitation fields (such as found in a transi-
tional boundary layer) as described in preceding sections. This hierarchy may also be
extended to include nonlinear dynamics of the beam and panel by replacing the linear
equations with appropriate nonlinear modifications (see, e.g., [7]). Consideration of the
models in this order allows us to study the most basic phenomena first. In the simplest
case, the primary phenomenon being studied is that of a second-order, linear stochastic
differential equation, driven by a nonrational (scalar) random process with the model
Eq. 43. By performmg the analysis on a modal basis, we will see the effects of the

temporal spectral shape on the control problem wnthout comphcatlons due to spatxalr'

complexity.
The latter will arise in the multimodal version of this same problem, and the com-

plexity can be built up by adding modes until sufficiently rich modal structure is ob- -
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Table 8.1 Hierarchy of Models; Shaded Region Represents Those
Models Investigated Experimentally in this Report

Beam

Single-Mode

Multi-Mod

Sinple-Mad

Multi-Mode:

Supersonic

Gaussian

Single-Mode

Multi-Mode

Non-Gaussian

Single-Mode

Multi-Mode

Plate

Subsonic

Gaussian

Single-Mode

Multi-Mode

Non-Gaussian

Single-Mode

Multi-Mode

Gaussian

Single-Mode

Multi-Mode
Single-Mode
Multi-Mode

Supersonic

Non-Gaussian

tained. Consideration of the superSo}\ic case within the beam model will }eq-u;fe the
development of a Green's function for the two-dimensional acoustic potential of Egs.
7.3-7.5 (analogous to that of Eq. 3.5). Work related to this problem can be found in [9].
Finding this Green's function is an intermediate task to finding a suitable
representation for the acoustic damping in terms of the modal response of the beam.
The study of the plate is a conceptually straightforward extension of the study of the
beam. However, it is anticipated that the additional complexity will provide
several challenges in implementing this extension. One important issue is the
eigenfunction decomposition of the plate motion, which in the case of proportional
damping must be accomplished by either numerical approximation, asymptotic
expansion, or some other approximation method. One promising such method is that
applied in [25], in which the modal behavior is approximated by separating the
modal structure into one-dimensional (x and y) components. For non-proportional
damping, eigenfunction decomposition is not possible. These are issues to be addressed
in the follow-on to the current study.

9 Experimental Results

In this section we describe the results of computer simulation experiments that were
conducted on a clamped beam as a first step toward adaptive nonlinear feedback

17



controls for reducing the vibratory response of aircraft panels subjected to a turbulent

boundary layer. Investigation is limited to the shaded region in Table 8.1

9.1 Control System Simulation — =~
We cons‘iﬁcijér; in thxséectfon the details of experiments at the first level in the
hierarchy described in the preceding section. That is, we consider the control of the
fundamental mode qf a clamped beam subjected to a subsonic flow.

A system model for this problem is the  following forced, undamped scalar second-

order ordinary linear differential equation (see Eq. 5.1):

2 o4\ -
(pl-gﬁ byt ml) w(t) = f,() + ¢, (1), (9.1)

where pﬁl and D are the density and rigidity, respectively, of the beam; A, is the
principal eigenvalue of the biharmonic operator in one dimension (i.e., Eq. 7.6 with k
= 1); and where W, fl, and C, denote the projections of the beam displacement,
forcing field, and control applied, respectively, onto the principal spatial
lf, where o =

o, ‘\} 1- {3, is the damped natural frequency of mode m, ,, is the undamped natural

frequency of mode m, and €, is the damping ratio; these terms were discussed in

Section 3, and are discussed further in Appendix A and B.
Note that the homogeneous version of Eq. 9.1 is a damped oscillator with resonant

frequency a
\/ DA,/ p
2n '

For the benchmark parameter values set forth in the above section, the principal
eigenvalue is

v = 9.2)

A, = (—%L) (9.3)

and thus the resonant frequency of Eq. 9.1 is

v, = 90.86 Hz. B 7 (94)

The resonant frequencies are tabulated in Table 9.1 for the different modes.
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Table 9.1: First Ten Eigenvalues and Corresponding Natural Temporal
Frequencies of Benchmark Beam

. Mode(zt)amber A, (x 104) fm(H2) @, (rad /sec)
1 5.7842 90.862 570.90
2 43.948 250.46 1,573.6
3 168.92 491.02 3,085.1
4 461.58 811.68 5,099.9
5 1,030.0 1,2125 7,618.3
6 2,009.3 1,693.5 10,640
7 3,561.6 2,254.7 14,166
8 5,875.9 2,896.0 18,196
9 9,168.4 3,617.5 22,729

10 13,682 4419.1 27,766

To design an experiment for assessmg the effectiveness of adaptive control
according to Eq. 9.1, we first convert this model to discrete time. As will be seen, a
sampling rate f; of 10, 000 samples per second (i.e, a sampling interval of 100 psec.)
will provide ample margin for implementing a digital control on Eq. 9.1; this is the
sampling rate used in the simulations. On defining the sampled displacement and

input sequences as

w, = w(kd), k=01,. (9.5)
fi = [k, k=01,.. - (9.6)

where A = 1/f, and k is now the time index, we can write a discrete-time plant model

corresponding to Eq. 9.1 as (see Appendix A for derivation)

[w,‘ o ] ey siu(cbdA)/p1 - asin(ogd) + og cos(ogd))og e Bginagayayg

WE+1 - 02 e Msin(wgh)oq e~ B(cos(wgd) - a sin(wA) og)
Wk 0 0
[Cvk]* [A/m ]f"*[A/m]c" , ©.7)

19



for k=0,1,... where Wy is the state variable representing the time derivative of -

wk(t) at the sampling times ¢ = kA —

For the purposes of experimentation, we assume that we can observe directly the
motion of the beam projected onto the fundamental modes (ie., ideal sensing). The
case of practlcal discrete sensors is discussed further in Section 11.3. We also assume
that we can measure the sequence W;, Wy, . . ., without error (i.e., the noiseless case).
The situation in which there is measurement error is a straightforward modification
of this case. Moreover, we assume that we can apply a control ¢ at each sample time
k. For a stochastlc plant such as Eq 9.7, the control sequence (ck} must of course, be a
function of the system outputs, i.e., for each k, cx will depend on previous W;s.
Fig. 9.1 illustrates a block diagram of the complete simulated system with unity
feedback control for each vibration mode; note that each mode to be controlled has a
similar control loop. Simulation of the dynamics is direct from the plant and

controller equations. The reference input is taken to be zero since this is the desired
amount of modal deflection. The sequence {w,,(t)}, the modal displacement of the mh

mode, is thus a direct measure of the error signal. The error signal drives the
controller, which synthesizes a modal actuation, ¢ (t) thaf is summed with the

turbulent modal force, f, (), that together drive the plant (1 e., act on the beam). The

action taken by the controller should be such that the modal dxsplacement w (t) '

remains close to the reference input, which is taken to be zero.

Oscillator
@ ’ Turbulencs Ly Gauasian Whie Noise
Filer
palich
Laminer Boundary Layer Tubulent Boundary Layer

Relerence =0 Emor

Controller Plant

Figure 9.1: Block Diagram of Control System for Modal Response of
Beam '
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1 m
< Jwhp (9.8)
k=1

Assuming as an objective the minimization of the average vibrational energy
over m modes, an optimal control strategy can be specified for this problem; note that

<.> denotes the expected value of the bracketed quantity. Generally, since F(®) is not

rational but instead exponential, this control will be produced by an infinite impulse
response (IIR) filtration of the measurement sequence. An IIR filter structure has
particular advantages for the problem of interest here, in that it is easily adapted; it
is also easily generalized for the nonlinear case in which the linear predictor is
replaced with a nonlinear polynomial neural network predictor.

If the forcing input were a rational process, then the optimum filter would have a
recursive implementation as a Kalman state predictor. However, for the case at hand,
the system is not rational, and the optimal controller will not, in general, have such a
simple implementation. As discussed below, however, since the forcing function is
being modeled as an ARMA process, the optimum stochastic controller will take the
form of an optimum state estimator (e.g., a Kalman filter).

In its adaptive form, the objective of mmlmlzing Eq. 9.8 is replaced with that of
minimizing the raw squared average

;H-Zw,% (9.9)
k=1

The basic design issue is that of creating an adaptation algorithm to minimize the
objective of Eq. 9.9 within the dynamical model (i.e., Eq. 9.7). The spatial issues have
been removed by the projection of the spatial structure onto the principal eigenspace of
the biharmonic operator. In this way, we reduce the problem to the above-described
scalar problem in which we have the scalar measurement sequence {w}. Note that, in
a real system, an approximation to such a measurement can be produced by combining
the outputs of an array of sensors distributed on the beam. The outputs of these sensors
can be combined at each sampling time in a way that mimics the projection of the
displacement onto the eigenfuntion y;:

a

W) = | Y wx b dx. (9.10)
K
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~ Note that from the viewpoint of the controller, the Plént is_.unknown. This makes

developing a controller difficult, since to determine its coefficients, one would ideally
know the desired output of the controller in real time. The first approach that was
attempted in designing a controller was to try to predict f,a(t) based on knowledge of
both the plant and the previous measurements of {w,}, with the intention of setting
A A . .

C,,(t) = —f(t), wherec (F) represents an estimate of c,,(t); the sequence of previous
measurements {W,} must be used instead of [fk) since the latter is not available. In
designing such a controller one obtains for each mode an equation of the form ~ *

n n
E w% = %Z,U}'?m—z + z(fl—l_.?t—lk—z)]z' (9-11)
=1 = - S

X -

where {w} is the modal beam displacement, {ﬁ} is the modal forcing signal (i.e.,

boundary-layer pressure), ar\d'?m_2 amd];,_m_2 are optimum two-step-ahead and one-
step-ahead predictors of {f,}, respectively.

When an FIR transversal filter based on this approach was implemented, it was
found to be highly unstable; any error in predicting [ft} introduced an error in the

control signal input to the plant; this in tum increased the modal displacement error,
which then had to be compensated for along with the turbulence force at the next time
step.

An alternative strategy was then implemented which proved to be highly
successful. It is based on the notion of making no assumptions regarding the temporal
relationship between ¢, (t) and fu(t). The controller is implemented as an IIR filter
using a separate dynamic polynomial network nodal element, as shown in Fig. 9.2, to
control the displacement in each mode. Note that an IIR filter was used instead of an
FIR filter since it was expected to reduce the number of terms necessary in the control

When designing an estimation neural network for the purpose of smoothing,
filtering, or prediction, the structure of the network can be established using the

Barron Associates, Inc. (BAI) Algorithm for Synthesis of Polynomial Networks.
(ASPN-II) [13]. This software package is used to structure and parameterize static
(i.e., FIR) networks; similar algorithms exist for structuring and parameterizing
dynamic (i.e., IIR) polynomial networks [1]. However, because the modal
displacement error input to the controller is a function of previous control outputs, such
algorithms cannot be used to structure and parameterize the controller a priori;
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instead, the proper controller must be identified during the process of controlling. In

practice, BAI has found that high-order controllers are generally not necessary.

Accordingly, a simple dynamic nodal element feeding back the two previous control
A A

outputs, C(t—1) and Cp(t=2), and the three previous measurement values, Wp,(t-1)

and wn(t—-2), was attempted initially. Because this structure performed well,
attempt was made to reduce the number of measurement value feedback terms. It was
found that the minimum adequate controller is one that feeds back the two previous
control outputs and the two previous sensor measurements. No attempt was made to
reduce the number of previous control outputs that are fed back: two are the minimum
necessary for constructing an oscillator which, in the case of no damping, captures the
basic behavior of the plant.
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Figure 9.2: Dynamic Polynomial Neural Network Nodal Element e(t)
Represents the Modal Displacement Error and c(t) the
Controller Output

In all experiments, this simple controller was trained off-line using Gaussian
white noise (GWN) as the input process f(t). GWN simulates any (broadband)
continuous input disturbance to an arbitrary degree of accuracy. This implies that, for
a plant with a given eigenstructure, in a mean-squared-error sense and without a priori
knowledge of the temporal excitation function (other than its continuous as opposed to
discrete nature), there is a single ideal control function. The spatial forcing function is



already taken into consideration in the rnodal response function as defined in Eq 7.8.
flow conditions and thereby, indirectly, any and all boundary layefartat;ons

With all parameters initially set to zero, the simulated beam was exposed to 0. 25
sec. of GWN, and the modal deflection was noted. The controller parameters were
then adapted using a Guided Random Search (GRS) technique; the process is
functionally similar to using the Least Mean Squares (LMS) procedure, but has been

found to converge much more rapxdly than the LMS algorithm. The simulated beam

was then exposed to additional mdependent GWN sequences of the same duration,
each time using a controller ‘based on the prekusly adapted parameters to attenuate

the modal response of the beam. Adaptation of the controller parameters continued in

this fashion until the sum of the squared errors over each 0.25 sec. excitation interval

had decreased to a steady-state level, which was generally between three and six

orders of magnitude below the uncontrolled case (i.e., 27 to 60 dB vibration reduction).
As discussed above, all mode controllers implemented in this study utilized only

four parameters, two parameters were used to weight the previous control outputs,
Cm(t-1) andcm( t—2), and two to weight previous measurements of the modal

dtsplacement of the beam, W p,(t—1) and w,(t=2). These controllers required
approximately 1000 GWN sequences of length 0.25 sec. to achieve the above-stated
error reduction, independently of the mode, m, being controlled. This suggests that
real-time, off-line training of the network requires approximately four minutes. Note
that training is done only once off-line to obtain nominal control parameters for each
mode to be controlled; in addition, training of all mode controllers may be performed in
parallel. Also, the coefficients determined in training the controller for each mode
were used under all flow conditions. Because the controller is trained on GWN, it is
general enough to handle essentially any broadband flow condition.

Since the plant in the simulation is stationary, no on-line adaptation was
required. An adaptive controller may be implemented, however, by continuously
observing, on-line, the decrease or increase in the modal response of the beam to
parameter changes, as was done during off-line training. In essence, the controller
continually searches for new parameters to improve performance. In general, the
search space is a nonlinear function of the parameters; thus, search techniques such as
GRS may be used. Alternatively, Levenberg-Marquardt (LM) or LMS algorithms may
also be used, based on the equations that describe the plant or on-line approximations,
respectively. Since the plant equations are well known, or can be learned (e.g.,
estimated) inductively based on empirical data, an LM algorithm is a practical way
to achieve s:gmfxcantly more rapid convergence of the parameters both on- and off-

line.
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9.2 Beam, Single Mode, Subsonic Flow

9.2.1 Laminar Boundary Layer

For laminar flow, the excitation process f(t) is assumed to be sinusoidal, as discussed in
Section 4. Fig. 9.3a illustrates the response of the beam to pure laminar flow when no
control is applied, where the sinusoidal excitation frequency was selected to
correspond with the resonant frequency of the first mode (viz., 90.86 Hz). The
amplitude of the excitation was scaled to equal that of the turbulent filter discussed in

the next section. From the figure it can be seen that the projection of the beam
displacement, W, onto the first principal spatial eigenfunction, ¥,, grows in an
oscillatory fashion until a steady state is achieved. Fig. 9.3b illustrates the modal
response of the beam when control is applied continuously during beam excitation.
Table 9.2 provides the average sum-square modal displacement error of the beam for
the first mode, as computed over the last 0.1 sec. of data in the figures. From the table
it can be seen that the controller reduces the average sum-squared error of the modal
response of the beam by 60.3 dB.
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Figure 9.3a: Uncontrolled First Mode Response of Beam to Laminar
Excitation
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Table 9.2: Averago Sum-Squared Modal Dispiacement for Mode One

with andw without Control -

— Avérage Sum- Avei;age Sur;:m ~ Vibration
Type of Squared Error Squared Error Reduction with
Excitation (without (with Control) Control (dB) )
Control)

Laminar 243134x 1070 | 2.24831x10"° 603
Turbulent 725780 10’14 6.70857 x 10"" 303
Transitional | 487304 10™! | 16436610 547 »»

922 Turbulent Boundary Layer .

In excxtmg the beam with turbulent flow, a major challenge is to simulate the forcing

process. This part of the simulation requires generation of random sequences with the

power spectral density of the sampled continuous-time disturbance. For the first mode .
this spectral density is given by

pi(@) = fs T (fs0), -R<OST, (9.12) .
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where l"l'l is given in Eq. 7.13. Such a sequence can be generated by filtering a white
Gaussian process with a filter whose transfer function is

H(o) =\ 94(), -T<w<T. (9.13)

This filtering can be performed in the frequency domain, as shown in Fig. 9.4, by first
generating a white Gaussian sequence; applying a fast-Fourier transform (FFT);
multiplying the transformed sequence by H(®); and then retransforming back to the
time domain. Implementation of this model directly in the time domain is also
straightforward, as will be seen.

Gaussilan Inverse

Random Number e _'l:'aSt Fourier . s \ ’ ‘Jm) 1 Fast Fourier }——p» Ik
ransform

Generator Transform

Figure 9.4: Simulation of Turbulent Forcing Function

From Egs. 7.10 - 7.18, the turbulent forcing function f, is seen to be a Gaussian
random process with power spectral density:

I'ii(@) = 2 F(o) [Re{A11} + Re(Z,}], (9.14)

where Aj 1, £1,1, and F, are as defined in Egs. 7.14, 7.15, and 7.17, respectively. The
function F(®) is plotted versus @ in Fig. 9.5 for the subsonic benchmark parameters.
Note that this part of the spectrum is relatively broadband, having a (one-sided)
half-power bandwidth of approximately 3000 rad./sec. (500 Hz). For reference, the
fundamental frequency of the unforced oscillator occurs at 570.9 rad./sec., as shown in
Table 9.1. L

The remaining term in Eq. 9.14 is a rational function of frequency. Its primary
behavior as a function of frequency can be predicted from the function

1

—— 9.15
|A4-—11| ( )

as seen in Eqs. 7.14 and 7.15.

27



0.00012

o001 PN -

Fay 000008 <
0.00006 <

0.00004

0.00002 Fe ez mionsies

04 v —trr
888 2% % g
o(rad/secy
Figure 9.5: F(w), the “Irrational” Part of the Forcing Spectrum for
Subsonic Benchmark Parameters: 06* = 0.0039m,v =
110m/s, A} —024 A, -108 Ay =180, K| = 047 K, = 30

~ and K} —140

Fig. 9.6 shows the behavior of the real part of the rational term Ay for the

subsonic benchmark parameters. Note that this function has a much narrower
bandwidth than that of F; thus, it will determine the overall bandwidth of the

forcing function. Fig. 9.7 illustrates the behavior of the real part of the rational term

0.3

0.25

4
4

02
Re (s, @]
' 0.15

0.1

0.05

0' —

-0.05

m(rad/sec)
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Forcing Spectrum for Subsonic Benchmark Parameters:
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£1,1, again using the subsonic benchmark parameters. The complete turbulent
excitation forcing function of Eq. 9.14, which is real everywhere for mode one, is
plotted in Fig. 9.8.
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Figure 9.8: Spectral Density of Turbulent Excitation for Mode One
Based on Subsonic Benchmark Parameters
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It should be noted that, in view of the fact that the function F (w) is relatively

broadband, a reasonable approx1mat10n in computmg I‘; 1((0) would be to assume that

F(w) is, in fact, constant. This approxxmanon models the forcing process as a rational
system driven by whlte noise. In partlcular, under this assumpnon the spectrum
I'1.1(®) becomes a ratio of polynomials in @2. These polynomials can be factored into
causal and anti-causal parts, the causal part of which defines a filter generating the
desired forcing process when driven by white Gaussian noise. (see, e.g., Chapter 5 of
[16].) This was not the approach taken herein, however. As discussed earlier in this
section, Eqs. 7.14, 7.15, and 7.17 were solved analytically for the first two modes.
These solutions are rather extensive and are therefore not given here; they were
generated using Mathematica, a software package for performing symbolic (as
opposed to numeric) calculations by computer. Instead, their spectra are given
graphically: for the first mode, there is a single filter term I'y j(@), which was
depicted in Fig. 9.8. This filter was numerically s:mulated for—t<@< <m, and the
inverse Fourier transform computed using an FFT algonthm to obtain the turbulent
excitation impulse response function in the time domain. A white Gaussian sequence
was then filtered in the time domam usmg an FIR filter with tl'us xmpu]ée response, to

panel w1th turbulent ﬂow Note that in the uncontrolled case (F]g 9. 9a), the modal
response of the beam achieves a steady state having significantly less modal
displacement than was true for the case of laminar flow. When control is continuously
applied (Fig. 9.9b), the average sum-squared modal displacement is reduced by 30.3
dB. Fig. 9.10 illustrates the power spectra corresponding to the first mode
displacement depicted in Fig. 9.9. Note that the controller attenuates significantly
vibration at all frequencies, not only the resonant frequencies, of the beam.
9.2.3 Laminar-to-Turbulent Boundary Layer Transitions
The simulation of the excitation function in transitional flow was performed using a
binary gating field that switched intermittently between the two equilibrium
boundary layers (i.e., pure laminar flow and pure turbulent flow). The binary gating
field was modeled as Markovian in time, with transition statistics depending on the
probability of being in either state. For these experiments the probability parameter,
p, was set equal to 0.5, indicating equal likelihood of laminar and turbulent flow
conditions. Setting p = 0.5 produces the most intermittent flow regime possible with
such a simple model. o

The result of intermittent flow gating in the uncontrolled case is shown in Fig.
9.11a. When control is applied the response is as given in Fig. 9.11b, where it is seen
that the resultant first mode response is reduced by 54.7 dB.
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As discussed earlier, laminar-to-turbulent boundary layer transitions ‘represent a
non-Gaussxan excitation which, in general will requu‘e the use of nonlinear elements
in the adaptive I PNN controller. In our simulations, however, it was found that linear

networks adequately attenuated the modal dlsp]acement We believe that this was

the case because each mode of the beam represents a narrowband filter with respect to
the broadband turbulent excitation. The bandwidth of a system is inversely
proportxonal to its time constant, and this plant has a re]au;rel;ilairge time constant.
The consequence is that the effects of the input excitation are averaged in time and

therefore tend to a Gaussian distribution, for which case a linear controller is optimal.

9. 3 Beam, Multx-Mode, Subsonlc Flow

The mtroductmn of multiple modes complicates the above problem in that the scalar
Eq. 9.1 is replaced by the vector Eq. 5.1. The turbulent forcing field then is a vector
Gaussian process with a spectral density matrix described as in Eqgs. 7.14, 7.15, and
7.17. The control is now a vector process and the adaptation becomes a vector
adaptation. For the various flow conditions illustrated below, results are provided for
the second mode only since the vibration attenuation in each mode is essentially
independent of the other modes; therefore, results obtained for the second mode were
similar to those demonstrated above for the case of single-mode control.

9.3.1 Laminar Boundary Layer

Laminar flow was again simulated as a sinusoidal process, this time with a frequency
equal to that of the resonant frequency of the second mode of the beam (viz., 250.46
Hz). Fig.9.12a illustrates the response of the second mode of the beam to laminar flow
when no control is applied. The projection of the beam displacement, w,, onto the
~ second principafspatial eigenfunction, V,, of the beam grows until it achieves a
steady state. The response of the beam when control is applied is shown in Fig. 9.12b.
From Table 9.3 it can be seen that the average vibration reduction as computed over
the last 0.1 sec. of the data was reduced by 51.0 dB.

9.3.2 Turbulent Boundary Layer

To simulate turbulent flow, Egs. 7.14, 7.15, and 7.17 were solved analytically for I'. For
the second mode, I is a matrix of dimension 2x2 that cross-couples the random

processes exciting each mode independently; specifically, the boundary-layer forces
are generated using the following equation:

[)f(l] [‘r'i. Fé:%][ﬁ%%;l o 9.16)
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Table 9.3: Average Sum-Squared Modal Displacement for Mode Two
with and without Control

‘.»_K\‘/‘;;;ge Sum- | Avérage Sum—ﬁz W:\:/“ivbnration
Type of Squared Error Squared Error | Reduction with
Excitation (without Control) | (with Control) Control (dB)
Laminar 164807 x 10" | 1.29531x 10" 51.0
Turbulent 825576 x 10 | 6.62533 x 10’17 31.0
Transitional | 4 68968 x 10"2 134811 x 10" 454

where GWN1 and GWN2 are mdependent Gaussian white noise processes. Note that
in the unimodal case, GWN, = 0, so that only the rl ; term was needed. In the
multimodal case, creating the turbulent excitation amounts to fxltenng mdependent
GWN sequences using the multi-dimensional filter I". "

For the second mode there are four terms in the spectral density matrix; in general,
for m modes, the matrix has m? terms, growing as the square of the number of modes.
As m increases, the analysis and computational effort to generate the turbulent forcing
functions having the appropriate spectral characteristics grows dramatically. For
this reason, the number of modes studied in this Phase I report was limited to the first

two. : :
As mentioned earlier, the individual terms of I", namely Fl v ]"l iy rz ;- and

I, |, were generated based on Egs. 7.14,7.15, and 7.17. The spectral density T} was
discussed earlier in Section 9.2.2 in describing the turbulent excitation for mode one;
recall that T, | in Eq. 9.14 is real because the imaginary terms cancel in Eq. 7.13; this

is guéranteed in this case because A- = A. ,and E’- .= =~ ; For the same reason, l"2'2
will also be real; Fig. 9.13 shows a graph of F2 2 (a)) vs. a) The remaining terms in
the turbulent filter matrix I are rl 2 and 1‘2 |+ Which are complex since the
J,l, indeed,
I’l'z and 1'2,1 are complex conjugates of one another, 50, that f!\elr lmagmary parts add

imaginary terms do not cancel, because in general A # A and Sij

rather than cancel. Graphs of the real and imaginary parts of l'"l ,and Ty | are given
in Figs. 9.14 and 9.15 respectively. Note from Eq. 9.16 that the forcmg vector f is
complex. Because we require a real excitation sequence, only the real parts of l"1 pand
', | were used to generate the off-diagonal elements in the turbulent excitation
matrix. The I” matrix was simulated as described earlier to create time-domain filters
that were applled to the Gaussian white noise sequences. - * —=—=
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Fig. 9.16a illustrates the case of no control for the second mode where the beam
was excited using the simulated turbulent flow process defined by I'. The
corresponding controlled case is shown in Fig. 9.16b, where the vibration is seen to
have been attenuated by 31.0 dB. The corresponding natural and controlled vibration
spectra for this mode are shown in Fig. 9.17.
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37



2.0E-9

p

0.0E+0

Re [T, , (@)

-2.0E-9

-4.0E-9

-6.0E-9+4rrrrprrrr

TrTiTTTY

- _

@ (rad/sec)

Figure 9.14a: Real Part of Spectral Density Matrix Term 1"1,2

0.0E+0+
-5.05-75
] Y/
-1.0E-6 \ /
Im[r, ()] : /
-1.5E-6 //
-2.oeef \v //
Y .78 N [ SO S S S —
cEEEEEE G
m(rad]sec) :

Figure 9.14b: Imaginary Part of Spectral Density Matrix Term I"l’z

38

gy 4 g gt

T e i e e g =

21 s p—— g =




2.0e-9

0.0E+0

Re[r,, @] 50e.0]

-4,0E-9

-6.0E-9 4+

° g 8
-

Figure 9.15a: Real Part of Spectral Density Matrix Term rz,x

T[T

o (rad /sec) '

88§ 3

2.5E-6

2.0E6 : /

1.5E-6
Im [rl'z (0))] )

1.0E6 :

5.0E-7 ] /

0.0E+0

"HE8d488¢

o (rad/sec)

Figure 9.15b: Imaginary Part of Spectral Density Matrix Term Fz,l

39

T



0.0000006 -

o I 'l.n

0.0000004 :

| vl l |||h

I
““H [

0.0000002 -

wz( t)

T

-0.0000002

il

-0.0000004

)

0.0000006 -

0

005 01 015 02 025 03 035 04 045 05

L T 11T

time (sec)

Figure 9.16a: Uncontrolled Second Mode Response of Beam to
Turbulent Excitation

0.0000006 -

0.0000004 -

0.0000002

wyt)

I Ty

ahatablintnnibiatipbphiinbbeiniinrtegsst aduepht

-0.0000002 -

-0.0000004

-0.0000006 -
0

"

005 01 015 02 025 03 035 04 045 05

time (sec)

Figure 9.16b: Controlled Second Mode Response of Beam to Turbulent
Excitation




0.0002-
0.00018 ]
0.00016
0.00014 ]
Power 4 00012
Spectrum ]
0.0001 4
-4
0.00008-
0.00006 -
0.00004

0.00002 J .

ojh'v L4R 20 B R4 /\’ llJ'Yrrr r"—r}—‘

C O O © O © O O O O O

O O O O O 0 O O O ©Q

N¥ee53888 g

@ (rad/sec)

Figure 9.17a: Power Spectrum of Modal Displacement with Turbulent
Boundary Layer for Mode Two without Control

0.0002 -

0.00018-

0.00016

0.00014

Power 4 50012
Spectrum ]
0.0001 ]

0.00008 -

0.00006 -

0.00004

0.00002-

0++m

o

LISLEL S0 BB I AN T B B N O N B

Q

e O  © O O O ©
(=]
S 838888888
v—v—‘v-v-v-N
o (rad/sec)

Figure 9.17b: Power Spectrum of Modal Displacement with Turbulent
Boundary Layer for Mode Two with Control

41



9.3.3 Laminar-to-Turbulent Boundary Layer Transitions

To simulate laminar-to-turbulent boundary layer transitions, the same binary gating
field discussed in Section 9.2.3 was used. The response of the second mode of the beam
with no control is illustrated in Fig. 9.18a. The controlled case is shown in Fig. 9.18b,
where it can be seen that the vibration response has been reduced by 45.4 dB.

9.4 Vibration Suppression as a Function of Damping

To study the reduction in modal displacement in turbulent flow as a function of
damping, the damping ratio, {, used in the plant model was varied from 0.001 to 0.1.
Typically, the range of damping ratios that one would expect to see in panels is on the
order of 0.001 to 0.01. The controller polynomial neural network was trained using the
power-law proportional damping relationship that is discussed in Section 3 and in
Appendices A and B; the trained controller was then tested on plants having different

levels of damping. As demonstrated in Appendix B, power-law proportionate
damping provides an effective damping ratio of {; = 0.007265 at the first-mode

resonant frequency, and {, = 0.003696 at the second-mode resonant frequency. Figs.
9.19a and 9.19b illustrate, for the first two modes respectively, that the reduction in
vibrational energy due to active control decreases with increasing damping ratio, as
passive damping alone reduces the amplitude of vibration to be controlled.

It is interesting to note that even in the case of no damping, the controller is still
able to keep vibration to a neghglble level, similar to that demonstrated in Sections
9.2 and 9.3. In the undamped case without controI ‘the modal displacement continues
to grow without bound for the case of intermittent flow with p = 0.5, as shown in Figs.
20a and 21a for the first and second modes respectlvely, with control, the modal
displacement remains negligible, as illustrated in Figs. 20b and 21b. As a result, the
relative reduction in vibration level increases without bound as damping goes to zero.
Note that the controller in the above undamped case was trained using power-law
proportionate damping; it was not retrained for the undamped plant. Similar results
were obtained for the cases of pure laminar and pure turbulent flow.
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10 Conclusions

Adaptive nonlinear polynomial neural networks were used to control vibration of a
simulated aircraft structure (viz., beam) resulting from acoustic excitation by the fluid
boundary layer. The objective was to control actively the coupling of sound from the
fluid to the structure. The acoustic excitation in this project included laminar,
turbulent, and laminar-to-turbulent transitional flows, representing respectively,
narrowband-Gaussian, broadband-Gaussian, and broadband-non-Gaussian excitation.
Excellent attenuation of 30 to 60 dB was achieved, even under conditions of no natural

damping.

11 Future Extensions

11.1 Theoretical Analysis

Due to the necessarily limited scope of the Phase I study, the concept demonstration
was restricted to a simpler, lower-dimensional framework than can be reliably used to
model actual aircraft panels. To bring the promise of active vibration control into
practice, it is necessary to continue this study using more realistic panel models, and to
verify the predicted control capabilities through experiment. The following are
among the topics to be investigated further:

11.1.1 Plate (versus Beam) Models

The Phase I effort focused on the problem of a vibrating beam rather than a vibrating
plate, the latter of which more accurately models aircraft panels. Thus, to bring these
techniques to the point of applicability, it is necessary to add an additional
(transverse) dimension to the structure being controlled. There are three primary
issues that will arise because of this increase in dimensionality. One issue is that,
unlike the case of a clamped beam, the eigenstructure of a clamped plate is not known
in terms of readily calculated functions. This is primarily an analytical problem that
can be overcome using approximation techniques. Another, more substantive, issue is
that there may be effects in the control of a vibrating plate that do not appear in a
vibrating beam. A further issue is that the possible configurations of discrete
actuators and sensors (discussed below) will be quite large; thus, considerable
investigation will be necessary to select optimal geometries.
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11.1.2 Panel Nonlinearity

The linear plate equation only approximates the true dynamics of a vibrating plate.

This approximation is accurate for small deflections and linear-elastic materials

where shear distortions and rotary inertia are negligibly small. Thus, in the problem
of interest here, this approximation should be accurate for vibrations that cause small
panel displacements. If the plate vibration is regulated effectively, a linear model
will provide an accurate description of nominal plate behavior. On the other hand,
even in a regulated plate, there is the potential for larger plate excursions if the
excitation field is sufficiently intense. Such excursions will drive the plate into
nonlinear behavior, and thus it is of interest to model this nonlinearity and to consider
its effects on controller design and performance. The mathematical modeling of
nonlinear plate behavior has been described in several works, including [3, 7]. There
are several potential sources of nonlinearity in the plate behavior. Perhaps the most
important of these phenomena for the thin, clamped panels often used in aircraft is in-
plane stretching, which causes additional stiffness when the panel deflection is
significant relative to the plate thickness. This stiffness increases with
displacement, thereby introducing nonlinearity. For sufficiently large displacements
(relative to plate thickness), this membrane action can actually dominate the bending
action described by the linear plate equation. This phenomenon can be modeled
mathematically using classical equations developed by von Karman [3]. In particular,
the plate equation for larger deflections is obtained by adding a bilinear term to the
right-hand-side of the linear plate Eq. 2.1. This term is given by:

37 o2 T o2 a7 ~ % axdy axdy

0°F 0w  9°F J*w 0% F ow
& , (11.1)

where Op is the thickness of the plate, and F is Airy’s stress function, which is
quadratically related to the deflection w through the PDE:

*w )2 *w Jd*w
- (11.2)

4 - ow ogw ow
VF-E{axay a2 )

with E denoting Young's modulus.

Subsequent efforts should consider these and related nonlinear phenomena both in
terms of their effects on the linear control of vibrating panels, and in terms of their use
in the design of appropriate nonlinear active vibration control laws for situations in



which the linear designs fail to exhibit robustness with respect to this nonlinear
behavior. For weak nonlinearity, perturbations on the modal approach are suitable
for analysis of these problems. However, to simulate accurately the behavior of a
strongly nonlinear plate, it may be necessary to abandon the eigenfunction methods
that are useful in the linear model and go instead to finite-difference methods of
propagating the corresponding nonlinear PDEs. Such simulation methods will also be
useful in other aspects of the follow-on studies.

11.1.3 Accurate Sensor/Actuator Models

Practical sensors (e.g., polyvinylidene fluoride (PVDF) films) measure strain rather
than displacement, and the control effects produced by practical actuators (e.g., lead-
zirconate-titanate (PZT) ceramics) are bending moments rather than direct
counterforces to the boundary layer. Although it is possible to produce sensors and
actuators that couple into the fixed spatial modes of a plate (see, for example, [2, 6,
10, 14, 23]), a more likely situation is that discrete sensors and actuators will be used.
To increase the realism of analytical phases of control design and performance
prediction, it is necessary to consider the constraints imposed by such physical sensors
and actuators. Use of multiple sensors and actuators represents a first step toward
systems that can be practically implemented.

As a more realistic measurement model, we consider here the sensing/actuation of
the field by discrete sensors/actuators having non-negligible dimensions, placed on
the surface of the beam. (For the purposes of discussion, we consider a beam model.)
One immediate effect of such a model is that, unlike the distributed case, it will not be
possible to isolate modes in this context, and thus modal coupling through the
controller must be considered. To model this situation, it is convenient to represent the
dynamics of the beam in terms of an infinite-dimensional state-space model:

X =AX +Bf (11.3)

where the state vector X, is given by

-If’](t)_
w,(t)
Zf’z(t)
X = w,(t)
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with w,(t) and Ibk(t) denoting the k™ mode of the displacement field and its time
a

derivative, respectively, ie., w,(t) = jw(x,t) ¥, (x) dx. A denotes the block-
0

diagonal matrix with 2x2 diagonal block

0 1
A= [ - o ‘ZCk“’k]

with @, = \/ D A./p,. As before, D denotes the beam s4tiffness, p, its mass density
per unit length, A, is the k™ eigenvalue of the operator e £, the damping ratio for
the k# mode, and £, denotes the vector whose k% component is the projection of the
boundary layer pressure field onto the k** mode of the beam (i.e., f,(t) = fg flx.i)
v, (x) dx); B is the matrix

0 \

w

Il
bt (O b O e
OO OOCOO
OO OO OO
OO OO0

SRRy,
Note that the modes are a fortzon uncoupled in thlS model I; and, wuth the above
model based on perfect sensing and actuation, the modes remain uncoupled. On the
other hand, if the beam motion is observed and actuated through practical sensors and
actuators, mode-coupling will result.
Suppose the beam motion is observed through a sensor occupying the region {x, S x

< x;) with 0 < x;, < xy 4. The resulting sensor electrical signal r(t) equals K F;(l)

s(x,t)dx, where s(x,t) is the strain in the beam and K is a constant incorporating the
efficiency of the sensor in converting strain into electrical energy. The strain is related
through the displacement by -

2
set) = K2 g’f't) | a4



where K’ is a constant determined by the properties of the panel material. Thus, the
sensor signal is given by

r(t) = Kjlw,(xy,t) - wy(xoH)l (11.5)
ow(x,t ,
where w,, = wa(; )ansz=KK.

Since w(x,t) = Zk:1 wi(t) W (x), the sensor signal can be written in terms
of the state X, as

Whereh = Ks [(Wllx (xl) - Wl,x (x()))l 01 (V’z,x (x]) - Wz,x (XO)), 0, R ]

d
with Y, = 5 Vi Obviously, if we have multiple sensors, each one will satisfy

such an equation. Thus, with L sensors we have a measurement equation:

rl(t)
r5(t)
: = HX, (11.7)
"L.(t)
with
3]
k
H = :2 , (11.8)
by

and Jij denoting the 1% version of i above.

Similarly, practical actuation can be modeled as follows. An electrical signal into
an actuator occupying the region Y, < x <y; will produce a bending moment whose
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magnitude is directly proporhonal to the voltage applied to the actuator; i.e., M(t)
= K,c(t), where c(t) is the control voltage across the actuator leads. (Formulas

relating the constant K to the material properties and geometry of the actuator are

available.) This moment can be modeled as consisting of two equal-magnitude bending
moments around the endpoints, Y and ¥y, of the actuator. These bending moments can

be taken to act in opposite directions so as to bend the center of the actuator down. In
terms of forces driving the beam equation, these moments can be represented as four

t
point forces, each having magnitude ZZix)' located at the points X = Yo~ Ax, x =Y,

+ Ax, x =y; — Ax, and x =y; + Ax, where Ax > 0 is small relative to the sensor
dimension. The forces at X =Yg = Axandx =Yy + Ax are upward, and the forces at

x=Yp+Axandx =Yy - Ax are downward. Thus, the force created by the control
signal c(t) applied to the actuator becomes

K c(
fa(x,t) = —— [8(x - yy— Bx) - &(x — Yo + Ax) + 8(x ~yy + Ax) -

5(x yl Ax)] (11.9)
where &( - ) denotes the Dirac delta function.

As an input to the beam state equation, this force translates into a vector _fa(t)

with k component (i.e., input to the K mode)

! K. c(t)
fail®) = {fa&,twk(x)dx -2 g+ 40) - o~ A9) +

Vi(yy — Ax) - Y ly; + Ax)]-
(11.10)

The moment arm Ax can be eliminated from the above by considering the limit as
it vanishes. In this limit (Ax — 0), we have

fur® =Kee® Wieslyo) - w0l (A1)
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Note that these forces enter the state equation as a term additive with the
boundary layer vector f,. With multiple non-overlapping actuators, we have the

superposition of the signals from the various actuators entering the plant; i.e.,

M
£ = Y £, (11.12)
1

m=

where M is the number of actuators, and L(Z’)(t) is the actuation vector (as above) for

the m™ actuator. ,

The above equations give us a complete parametric model for the transfer between
the beam motion and the sensor outputs, and between the control signals and the beam
motion. The control algorithm is inserted between these sensor output signals and

control input signals. Thus, from these equations, the control synthesis and simulation
can proceed. )

1114 Supersonic Boundary Layers

A significant increase in complexity results from the assumption of a supersonic
boundary layer. Here, the damping effects of the acoustic potential must be calculated
in modal form, a task that requires a calculation on the order of Eq. 7.10 but with
singular integrands.

11.1.5 Transitional Boundary Layers

Transitional flow can be modeled as a binary gating field that switches intermittently
between the regimes of pure laminar and pure turbulent flow. In Phase I the binary
field was modeled as being Markovian in time; follow-on investigations will require
that this be extended to be Markovian in both time and space, which can be modeled
as a dynamic Gibbs field. Transitional flow is expected to be a significant phenomenon
only in subsonic flow regimes; in supersonic flow, the boundary layer is sufficiently
well established so as not to be intermittent.

11.1.6 Multiple-Input, 'Murl’tr’iéle-Output Nonlinear Feedback Control

Digital signal processors (DSPs) can be used to control the panel based on adaptive
polynomial neural network algorithms. In the Phase I effort, the modal control

algorithms used might be characterized as “selfish,” in that the controller for each
mode was concerned only with minimizing the modal displacement of that mode. In
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practice, however, effectmg control of one mode will genegally excite othe: modes,

thereby causing spnllover and mcreasmg the dlsplacement in these modes. It is
desirable to have a more “selfless” control approach, one in which actuators work
together as well as individually for the combined minimization of beam or panel
modal displacement.

Although individual control loops could be constructed for each mode over which
control is to be exercised, a single multivariate controller is more powerful than
multiple univariate controllers, as cross-couplings between modes can be taken into
consideration, as shown in Fig. 11.1; this represents a perfectly general multi-input,
multi-output controller (MIMO) for the panel vibration. Note that there is no
requirement that the number of force actuators be equal to the number of d:splacement

SeNnsors. — - 1. ..o o

a0

namic
Pzrynomial N

Neural
Network

A
n®

=24\

amic a
ng;'“nomial 200

Neural
Network

Sl

=

[——

amic A
o Pelmomial | u
Neural
Network

)2
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Network (PNN) Mapping a Vector of L Sensor . .

Measurements, x(t), into a Vector of M Controllers, y(t);
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- Prior to the advent of neural networks, no general methods were available for the
synthesis of MIMO, nonlinear, adaptive controllers. Neural networks may now be used
to model implicitly the complex dynamic relationships and couplings between modes
for completely general MIMO control. Recently [21], Barron Associates, Inc. (BAI)
demonstrated that polynomial neural networks subsume Wiener-Volterra system
identification techniques, which are often used for the identification of MIMO
systems [20]; with PNNs, nonlinear and nonstationary (time-varying) systems, even
those having infinite memory (e.g., oscillatory systems), may be readily identified.
MIMO control represents an important research area having many potential
applications.

BAI believes that successful development of such algorithms is feasible today.
For the control of panel vibration, a MIMO polynomial neural network will be
realized by adapting the network to achieve a globally optimum solution. This
solution approach was not attempted in the Phase I effort due to time and budget
limitations.

11.2 Laboratory Experiments

Laboratory experiments might be designed to simulate the turbulent boundary layer
excitation and control of a section of an airplane panel consisting of a rectangular
frame covered with a thin aluminum alloy skin. Three sets of experiments are
suggested, beginning with applications of the control method to simple beam structures
subject to controlled random loadings (e.g., random, progressive plane waves) and
progressing to high velocity turbulent boundary layer excitation of panels.

11.2.1 Proof of Concept Experiments

The initial series of experiments are designed to demonstrate that a polynomial
neural network can control the dynamic response of a simple, multimodal structure
subject to random loadings. The structure will consist of a beam (clamped/clamped
boundary conditions) mounted in one wall of an acoustic wave guide. The acoustic
sources for the wave guide will consist of a series of hom drivers that generate plane,
progressive waves with controlled amplitude and frequency spectra. The wave guide
will be terminated anechoically to minimize end reflections. A series of sensors and
actuators will be mounted along the outside surface of the beam in sufficient numbers to
provide sensing and control in bandwidths containing high modal densities of the
beam. It is suggested that approximately three sensor/actuator pairs should be used in
this study. i
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Amplifiers for the actuators and S|gnal conditioners for the sensors should be
selected to be compatible with analog-to—dxgntal (A/D) and digital- to-analog (D/A)
computer control The controller unit rmght consist of a dlgxtal signal processing (DSP)
board interfaced with the A/D and D/A converters. For given excitation conditions,

the controller unit drives the actuators lndependently, with a phase and magnitude
prescribed by the neural network algorithm. Parameters to _be varied in the .
demonstration experiment include the amplitude, bandwidth, and bandwidth center

frequency of the progressive acoustic wave field. For this particular excitation, the

controller unit will drive the actuators to minimize the mean square velocity of the

beam response at a sufficient number of sensor locations to produce a global minimum.

11.2.2 Subsonic Turbulent Boundary Layer Excitation of a Uniform
Beam '

In this series of experiments, the acoustic wave gulde is fitted with a centnfugal

suction fan to provide turbulent boundary-layer excitation of beam modes up to flow

velocities corresponding to Mach 0.1. Hot-wire measurements are taken in the
turbulent boundary layer to determine the spectral content and spatial structure of the

flow. A measure of success of the adaptive controller will be its ability to reduce the

response of the beam globally as a function of flow velocity and turbulence level. Asa
further test of the robustness of the controller, turbulent bursts will be introduced
artificially upstream of the beam to provide potentially destabllnzmg fluid dynamlc
forces.

For the expenments outlmed in Sectxons 11.2.1 and 11.2. 2 the controller strategy
should be examined to determine its ability to control the response of a multimodal

structure with high modal densities and subject to distributed loadmg based on_

stationary, as well as time-dependent, spectra. Additionally, as a major part of the

above effort, the success of the control strategy as a function of the number of sensors

and actuators should be investigated. Particular attention should be given to setting

guidelines for the number of actuators and sensors required in the frequency band
containing a specified number of structural modes. - -

1123 High Velocity, Turbulent Boundary Layer Excitation of Panels

Following the successful completion of the above experiments, a third set of
experiments should be conducted to control the vibration response of a rectangular
plate subject to simulated, turbulent boundary layer excitations at high flow
velocities. This excitation should simulate the distributed and random loading
conditions of a high velocity, turbulent boundary layer. Based on the results of the
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experiments outlined in Sections 11.2.1 and 11.2.2, the control algorithms should then
be extended to accommodate a larger number of sensor /actuator elements. For the plate
experiments, it is suggested that approximately 100 sensor/actuator pairs be involved,
forming a ten by ten grid.
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Appendix A Derivation of Plant State Equations

The vector second-order ordinary differential equation for the damped beam is:

d? d
(pqﬁ L DA) wlt) = A1)+ (b, (A1)

where D is the plate rigidity; p, is the mass density (per unit area) of the panel; ¥is
the damping law; A is the the diagonal matrix with diagonal elements representing
the eigenvalues of the solution to V4y = Ay, w is the modal displacement; and f and
¢ are the vector boundary layer excitation and control forces, respectively.
Letting

xy(8) = w, (),

x(8) = w,(t) = x,(t),

x5(t) =7w2(t):

x4(t) = wz(t) = x3(t):

etc.,
the state equations for this system can be written in the form

2=Ax+Bf+Eg (A2)
as
| [ .0 1 0 0 0 ] i‘
3 0 0 0 1 0 3
X4 = 0 0 —DA-Z/PI —Y/pl 0 x4
. . 0 0 0 0 -DA4,/p -'r}pl - :
. — In —
L x,




— 0 0 0 7 f =~ 0 0 0 T
1/601 g g f; 1/(;’1 0 o0 ’;l
0 0 2
+ 0 1/p, O . + 0 1/p, O . (A3)
o 0o o | 0 0 0 :
L 0 0 1/p - /m L 0 0 1pd ‘m

in which the A matrix is seen to be block diagonal with diagoi\a} terms for the m'h

To put this model into the form
L= 0t HY g (A4)
for simulation requires the state transition matrix é,. whici;\ isrdefined by
o, = L61-0" a0 (AS5)

where L is the Laplace operator, s is the complex frequency, A is the sampling
interval, I is the identity matrix, and A is defined as above. For the m™ mode Eq. A5

gives
-1
s + /P, 1
0" p s2 + vs/py+ DA, /p; s2 4+ vs/p;+ DA,/p, (A6)
k - —DAM/PI s :
§2 + ys/py+ DA,/p, s? + ys/py+ DA,/p f=A

Comparing the polynomial in the denominator of each of the above terms with the
characteristic second-order equation st+2f @ s+ w,&, we see that ¥ =2 p,; 4 a,,.,

where { is the damping ratio. The roots of the denominator polynomial are -0+ j@,,

where @ = {@,, is the damping coefficient of the m'" mode, W, = @, N1~ {2 is the

damped natural frequency of the m** mode, and @,,= \j DA, /p, is the undamped




natural frequency of the m'® mode. Note also that the time constant of the system is
givenby 7=1/a [12].

Damping of the beam is achieved, then, directly through the selection of { or
indirectly through ¥. Since &= { @, critical damping occurs when {=1and @= @,
In [19], Maestrello defines a power law relationship & = 0.5 wlf which, unless
otherwise specified, is the damping coefficient used throughout this study.

Solving @, for the m™ mode gives

¢

m [e-aA[y .&'in(mdA)lp1 - asin(wgd) + o4 cos(ogqA)l w4 e_aAsin(a)dA)la)d
=

- 2

(A7)

e BBsin(wgayag e~ cos(wgd) - a sin(wgA) wg)
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Appendix B Modal Damping Ratio with Power-Law
Proportionate Damping

In [19], Maestrello used a power-law proportional damping of the form
1/3
Y = Ep®,, = 05 0 (B.1)
where, as discussed in Appendix A,

W= a)m\]l— 2, (B.2)

Y,, is the damping coefficient of the m' mode, @, is the natural frequency of the mh

mode, and {_ is the damping ratio of the m™ mode. This is also the form of damping
used in the computer simulations of Section 9. To determine the effective damping
ratio, {, for each mode, Eqs. B.1 and B.2 may be combined to form the following

equation:

== d, . (B.3)

Pl df ( B.4)

which has one real and two complex roots. Table 9.1 gives the un

damped natural frequency of the first mode as @, = 570.90 rad./sec. Substituting this
value into Eq. B.4 and solving for the real root gives x = 68.818. Since

x= o, ( B.5)
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Vx=og, ( B.6)
and fromEq. B.1, - S

05vx 0563818 ,
Cl = ® = 57090 = 0.007265. (B.7)
1

Similarly for mode two, the undamped natural frequency given in Table9.1is @, =
1573.6 rad./sec., which gives a real root to Eq. B4 of x = 135.29. Thus, '

05yx 0513529
Gy = o =T 15736 0.003696. ( B.8)
2
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The controllers implemented in this study achieved vibration attenuation of 27 to 60 dB, depending on the type of boundary layer
established by laminar, turbulent, and intermittent laminar-to-turbulent transitional flows. Application of multi-input, multi-output,
adaptive, nonlinear feedback control of vibration in aircraft panels based on polynomial neural networks appears to be feasible today.
Plans are outlined for Phase II of this study, which will include extending the theoretical investigation conducted in Phase I and verifying
the results in a series of laboratory experiments involving both beam and plate models.
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